网易伏羲携手昇腾AI打造玉知-悟空图文理解大模型,推动个性化体验升级

发布:2023-03-28 09:53:45
阅读:5719
作者:网易伏羲

不少人都有过这样的“心动”体验:上班路上打开网易新闻,推荐内容恰好是自己最近关注的行业动态;下班途中打开网易云音乐,惊喜的发现了几个小众宝藏歌手,忍不住直呼“网易云真是太懂我了!”

个性化的推荐机制像一个贴心的朋友,在互联网的海量信息中,总能捕捉到最合你心意的那个。

01:个性化推荐机制的背后:多模态大模型保驾护航

作为国内专业从事游戏与泛娱乐AI研究和应用的顶尖机构,网易伏羲于2021年起着力打造“玉知”多模态理解大模型。基于图片-文本双塔结构,先后训练了2亿、4亿、9亿参数的“玉知”版本。同时,利用网易伏羲开源的EET高效推理框架,对模型压缩、算法适配、硬件底层等方面进行优化,使其推理速度提升4倍,满足了线上的高并发需求,降低了部署资源的损耗。

“玉知”多模态理解大模型优于Chinese-CLIP的CN-CLIPViT-H/14

在业务数据集的zero-shot评测中

“玉知”多模态理解大模型优于Chinese-CLIP的CN-CLIPViT-H/14

同时网易伏羲联合网易新闻及网易云音乐团队,将“玉知”多模态理解大模型在网易的多个业务场景中落地验证,为个性化推荐机制保驾护航:网易新闻基于“玉知”构建的图文内容表征,在推荐环节采用基于该图文向量的dropoutnet召回优化,对召回源、列表页视频试投、列表页试投整体等效果明显改进,实现视频和整体大盘的业务指标提升;网易云音乐基于“玉知”构建的内容表征引擎和内容相似检索引擎,在云音乐视频、长音频、广告等多个业务中,实现了对内容冷启动效率、CTR预估模型的优化,带来显著收益。

网易云音乐基于“玉知”构建的内容表征引擎和内容相似检索引擎

02:网易+昇腾AI:创造1+1>2的智能体验

为了更好的使能大模型应用创新,昇腾AI构建了从规划、开发到产业化的大模型全流程使能体系,并于2022年正式发布了昇腾AI大模型开发使能平台,打通了大模型从开发到部署的全流程。

在大模型的开发上,通过昇思MindSpore提供的自动混合并行API来加速训练过程,利用高阶的Transformer API,百行代码实现千亿级参数的模型开发,同时获得更好的模型性能;为加速大模型场景化适配,打造了丰富的微调套件,已成功应用于紫东太初大模型开放服务平台建设,支持小样本训练和模型一键微调;在大模型的推理部署上,昇腾AI提供的模型压缩工具,在精度基本无损的情况下,降低了70%计算量,提升了20%以上的推理性能。

为了给用户带来更好的智能体验,网易伏羲联合昇思MindSpore及华为诺亚团队,充分分析互联网行业数据集特性,对多模态模型结构进行优化,优选合适编码器并采用多阶段训练模式,基于昇腾AI大模型开发使能平台,共同打造了玉知-悟空图文理解大模型。

玉知-悟空图文理解大模型

玉知-悟空图文理解大模型可广泛应用在互联网推荐搜索等业务中,通过提取图文的特征进行相关的检索。在网易视频推荐业务的应用中,玉知-悟空图文理解大模型在核心算法指标中得到近5%的提升,效果远超预期。未来,联合团队将进一步将成果应用到网易新闻、网易云音乐等更丰富的业务场景中,提升最终用户的个性化体验。

玉知-悟空图文理解大模型应用在互联网推荐搜索等业务

当被输入丰富的行业知识时,更精更专的大模型将显现出巨大的应用价值。昇腾AI大模型开发平台已经具备了支持大模型开发所需的各项核心技术,同时提供了一整套高效、易用的大模型使能套件,形成了端到端的使能大模型开发能力。未来,昇腾AI将联合网易以及更多行业伙伴共建共享,助力大模型创新,为繁荣AI产业生态铺就一条信心之路。

相关文章
人脸检测和模糊算法的比较分析
人脸检测算法和模糊算法在准确性、效率、鲁棒性和隐私保护等方面具有不同的特点。人脸检测算法在人脸识别等领域有较高的准确性和鲁棒性,但可能需要较高的计算资源。模糊算法主要用于隐私保护,具有较高的效率和鲁棒性。根据具体应用场景的需求,可以选择合适的算法或将两种算法结合使用,以实现更好的效果。
2023-09-27 10:07:19
处理表格数据:基于树的算法通常优于神经网络
在处理表格数据时,选择适当的算法对于数据分析和特征提取至关重要。传统的基于树的算法和神经网络是常见的选择。然而,本文将重点探讨基于树的算法在处理表格数据时的优势,并分析其相对于神经网络的优点。
2023-09-27 10:02:13
网易伏羲获得Noisylabels榜单高位入选,两项研究引领标签噪声领域
近日,Noisylabels榜单发布了最新排名,引起了广泛的关注。在这次榜单中,网易伏羲以其两项研究成果:《ProMix:Combating Label Noise via Maximizing Clean Sample Utility》和《Rethinking Noisy Label Learning in Real-world Annotation Scenarios from the Noise-type Perspective》高位入选。
2023-09-26 09:57:22
网易伏羲获得Noisylabels榜单高位入选,两项研究引领标签噪声领域
AI怎么增加图片对比度和透明度
要通过AI增加图片的对比度和透明度,可以使用图像处理中的增强方法。常用的方法包括直方图均衡化、对比度拉伸和伽马校正等。本文将介绍这些方法以及如何在Python中实现它们。
2023-09-25 10:01:37
使用AI进行文档对比
通过AI进行文档对比的好处在于它可以自动检测并快速比较两个或多个文档之间的变化和差异,从而节省了时间和劳动力,减少了人为错误的风险。此外,AI可以处理大量的文本数据,提高了处理效率和准确性,并且可以在文档的不同版本之间进行比较,帮助用户快速找到最新的版本和变化的内容。
2023-09-25 09:57:28
网易伏羲 & Ray Summit 2023:强化学习推荐系统的创新之旅
近日,第二届Ray Summit会议在美国旧金山顺利举行。作为国际顶尖的大数据技术峰会,Ray Summit致力于展示和讨论使用Ray框架构建和扩展人工智能应用和基础设施的最佳实践,旨在促进人工智能、机器学习和分布式计算领域的创新和交流,每年会有来自DeepMind、OpenAI、Uber、LinkedIn、Niantic等公司和机构的数千名工程师、学者和行业专家参与。网易伏羲作为国内人工智能领域的前沿团队,也受邀参加此次会议。
2023-09-22 09:59:12
网易伏羲 & Ray Summit 2023:强化学习推荐系统的创新之旅
机器学习分类器算法
机器学习分类器算法是一种广泛应用于数据挖掘、人工智能等领域的算法,它可以对数据进行分类和预测,是现代人工智能技术的重要组成部分。下面将详细介绍一些常用的机器学习分类器算法。
2023-09-21 09:55:18
基于Attention机制的算法及应用
Attention机制是一种处理序列数据的重要算法,其核心思想是为每个输入序列中的元素分配一个权重,以便在计算输出时考虑这些元素的相对重要性。这种机制已经被广泛应用于自然语言处理、图像处理以及其他领域。下面将介绍几种基于attention机制的算法及其应用。
2023-09-20 10:08:33
Attention模型详解
Attention模型是深度学习中的一种重要模型,它能够帮助模型处理序列数据,从而在机器翻译、语音识别、图像处理等领域中取得了很好的效果。本文将详细介绍Attention模型的原理、应用和发展。
2023-09-20 10:04:47
svm网格搜索参数寻优过程
SVM是一种经典的监督学习算法,常用于分类和回归问题。SVM的核心思想是找到一个最佳的超平面,将不同类别的数据分隔开来。SVM网格搜索是一种常用的参数优化方法,通过对不同的参数组合进行试验,寻找最优的参数组合,以提高模型的性能。
2023-09-15 10:27:02

在线客服

合作咨询