Transformer模型对超参数的值很敏感,这意味着这些超参数值的微小变化可能会导致模型性能发生重大变化。这使得调整Transformer模型的超参数以在给定任务上实现最佳性能变得具有挑战性。
调整Transformer模型超参数的一种方法是通过称为超参数优化的过程,该过程涉及系统地搜索超参数值的组合,从而在验证集上产生最佳性能。有几种执行超参数优化的方法,例如网格搜索、随机搜索和贝叶斯优化,不过这些方法通常比较耗时且计算量很大。
网格搜索
网格搜索是一种用于超参数优化的方法,它涉及指定要搜索的超参数值网格,然后为每个超参数值组合训练和评估模型。
例如,假设我们想要调整Transformer模型的学习率和批量大小。我们可以为这些超参数指定一个可能值的网格,例如0.01、0.1或1.0的学习率,以及16、32或64的批量大小。然后,网格搜索将为每个组合训练和评估模型这些超参数值,总共产生了9个不同的模型(3个学习率x 3个批量大小)。
然后选择在验证集上表现最佳的模型作为最佳模型,并使用相应的超参数值在完整训练集上训练最终模型。
网格搜索可以成为超参数优化的有效方法,但它需要大量计算,因为涉及训练和评估大量模型。此外,可能难以指定适当的超参数值网格,因为最佳值可能取决于特定任务和数据集。
随机搜索
随机搜索是另一种超参数优化方法,它涉及对超参数值的随机组合进行采样,并在验证集上评估相应的模型。
与评估一组固定的超参数组合的网格搜索不同,随机搜索允许搜索覆盖更广泛的超参数值,因为它不依赖于预定义的网格。当最佳超参数值事先未知并且可能超出网格中指定的值范围时,这特别有用。
为了执行随机搜索,我们首先为每个超参数定义一个分布,例如均匀分布或正态分布。然后,我们从这些分布中抽取超参数值的随机组合,并为每个组合训练和评估模型。该过程重复固定次数,并选择在验证集上表现最佳的模型作为最佳模型。
随机搜索是一种比网格搜索更有效的超参数优化方法,因为它不需要训练和评估那么多模型。然而,与网格搜索或贝叶斯优化等更复杂的方法相比,它不容易找到最佳超参数值。
贝叶斯优化
贝叶斯优化是一种基于贝叶斯统计原理的超参数优化方法。这是一个迭代过程,涉及基于目前已评估的超参数值构建目标函数的概率模型(例如,机器学习模型的验证损失)。然后使用该模型选择下一组要评估的超参数值,目标是找到使目标函数最小化的值组合。
贝叶斯优化的一个关键优势是它可以通过使用概率模型结合有关目标函数的先验知识,与随机搜索或网格搜索等其他方法相比,这可以使其更有效地找到最优解。它还可以处理对超参数值的约束,并可用于优化评估成本高昂的目标函数,例如需要训练机器学习模型的目标函数。
但是,与其他方法相比,贝叶斯优化的计算量更大,因为它涉及在每次迭代时构建和更新概率模型。也可能更难实施,因为它需要指定概率模型并为优化过程本身选择超参数。
强化学习
强化学习(RL)是一种机器学习方法,涉及代理学习在环境中采取行动以最大化奖励信号。它已被用于优化机器学习系统的各个方面,包括超参数。
在超参数优化的上下文中,强化学习可用于学习将一组超参数映射到动作的策略(例如,使用这些超参数训练机器学习模型)。然后代理可以学习根据模型的性能调整超参数,以最大化与模型性能相关的奖励信号。
强化学习已应用于各种类型的机器学习模型的超参数优化。原则上,它也可以应用于Transformer模型超参数的优化。
然而,基于强化学习的超参数优化可能难以实施,需要大量数据和计算才能有效。而且强化学习对奖励函数的选择敏感并且容易过度拟合。因此,基于强化学习的超参数优化不像其他方法那样广泛使用。