机器学习中正则化是什么意思?正则化的概念详解

发布:2022-11-17 15:01:10
阅读:5984
作者:网易伏羲
分享:复制链接

在机器学习中,正则化是正则化系数的过程,即对系数进行惩罚,通过向模型添加额外参数来防止模型过度拟合,这有助于提高模型的可靠性、速度和准确性。可以这么说,正则化本质上是为了防止因网络参数过大导致模型过拟合的泛化技术。

正则化会增加偏差吗?

正则化旨在通过简化估计量来减少估计量的方差,这将以误差上升的方式增加偏差。不过出现偏差的情况,通常是在没有很好完成时发生,例如参数数量多于样本数量的情况。然而,当正则化正确完成时,正则化可以确保引入适量的偏差以避免过度拟合。

正则化的作用和意义

正则化的作用和意义在于防止过度拟合。当发生过拟合时,模型几乎失去了泛化能力。这意味着该模型仅适用于训练它的数据集,而不能被用于其他数据集。

举个例子,正则化可以视为调整参数a控制着对偏差和方差的影响。a的值越高,系数的值下降,方差减小。上升的a减少方差并防止过度拟合,但超过某个阈值后,会在模型中引入偏差,从而导致欠拟合

正则化的原理

正则化通过向复杂模型添加带有残差平方和(RSS)的惩罚项来发挥作用。以简单的线性回归方程为例。其中Y表示依赖特征或响应。

Y近似为β0+β1X1+β2X2+…+βpXp,X1、X2、…Xp是Y的独立特征或预测变量,β0、β1、…..βn表示不同变量或预测变量(X)的系数估计,它描述了附加到特征的权重大小。

拟合过程包括损失函数、残差平方和(RSS)函数。以最小化损失函数的方式选择系数。

系数将根据训练数据进行调整。如果训练数据中有噪声,就会发现估计的系数不会很好地泛化到未来的数据。这就是正则化发挥作用的地方,将那些训练学习到的估计值缩小并正则化为零。

正则化有哪些类型

dropout

在dropout中,激活的随机数会更有效地训练网络。激活是将输入乘以权重时得到的输出。如果在每一层都删除了激活的特定部分,则没有特定的激活会学习输入模型。这意味着输入模型不会出现任何过度拟合。

批量归一化

批量归一化通过减去批量均值并除以批量标准差来设法归一化前一个激活层的输出。它向每一层引入两个可训练参数,以便标准化输出乘以gamma和beta。gamma和beta的值将通过神经网络找到。通过弱化初始层参数和后面层参数之间的耦合来提高学习率,提高精度,解决协方差漂移问题。

数据扩充

数据扩充涉及使用现有数据创建合成数据,从而增加可用数据的实际数量。通过生成模型在现实世界中可能遇到的数据变化,帮助深度学习模型变得更加精确。

提前停止

使用训练集的一部分作为验证集,并根据该验证集衡量模型的性能。如果此验证集的性能变差,则立即停止对模型的训练。

L1正则化

使用L1正则化技术的回归模型称为套索回归。Lasso回归模型即Least Absolute Shrinkage and Selection Operator,将系数的“绝对值”作为惩罚项添加到损失函数中。

L2正则化

使用L2正则化的回归模型称为岭回归。岭回归模型即Ridge回归,在Ridge回归中系数的平方幅度作为惩罚项添加到损失函数中。

扫码进群
微信群
免费体验AI服务